NASA discovers first planetary system with two planets transiting same star

August 27th, 2010 - 2:33 am ICT by BNO News  

WASHINGTON, D.C. (BNO NEWS) — NASA’s Kepler spacecraft has discovered the first confirmed planetary system with more than one planet crossing in front of, or transiting, the same star.

The transit signatures of two distinct planets were seen in the data for the sun-like star designated Kepler-9. The planets were named Kepler-9b and 9c.

The discovery comes after seven months of observations of more than 156,000 stars as part of an ongoing search for Earth-sized planets outside our solar system. The findings will be published in Thursday’s issue of the journal Science.

“Kepler’s high quality data and round-the-clock coverage of transiting objects enable a whole host of unique measurements to be made of the parent stars and their planetary systems,” said Doug Hudgins, the Kepler program scientist at NASA Headquarters in Washington.

Scientists refined the estimates of the masses of the planets using observations from the W.M. Keck Observatory in Hawaii. The observations show Kepler-9b is the larger of the two planets, and both have masses similar to but less than Saturn. Kepler-9b lies closest to the star with an orbit of about 19 days, while Kepler-9c has an orbit of about 38 days.

By observing several transits by each planet over the seven months of data, the time between successive transits could be analyzed.

“This discovery is the first clear detection of significant changes in the intervals from one planetary transit to the next, what we call transit timing variations,” said Matthew Holman, a Kepler mission scientist from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. “This is evidence of the gravitational interaction between the two planets as seen by the Kepler spacecraft.”

In addition to the two confirmed giant planets, Kepler scientists also have identified what appears to be a third, much smaller transit signature in the observations of Kepler-9. That signature is consistent with the transits of a super-Earth-sized planet about 1.5 times the radius of Earth in a scorching, near-sun 1.6 day-orbit.

Additional observations are required to determine whether this signal is indeed a planet or an astronomical phenomenon that mimics the appearance of a transit.

Related Stories

Tags: , , , , , , , , , , , , , , , , , , ,

Posted in Sci-Tech |

Subscribe