NASAs Phoenix touches Martian soil with fork-like probe to find water

July 11th, 2008 - 12:23 pm ICT by ANI  

Washington, July 11 (ANI): NASAs Phoenix Mars Lander has touched Martian soil with a fork-like probe for the first time, which could provide information about frozen or unfrozen water in the soil.

Phoenixs robotic arm pushed the fork-like probes four spikes into undisturbed soil on July 8, as a validation test of the insertion procedure.

The prongs of this thermal and electrical conductivity probe are about 1.5 centimeters, or half an inch, long.

The science team will use the probe tool to assess how easily heat and electricity move through the soil from one spike to another.

Such measurements can also provide information about frozen or unfrozen water in the soil.

The probe sits on a knuckle of the 2.35-meter-long (7.7-foot-long) robotic arm. Held up in the air, it has provided assessments of water vapor in the atmosphere several times since Phoenixs May 25 landing on far-northern Mars.

Researchers anticipate getting the probes first soil measurements following a second placement into the ground, planned as part of todays Phoenix activities on Mars.

Phoenix also has returned the first image from its atomic force microscope that examines shapes of tiny particles by touching them.

This Swiss-made microscope builds an image of the surface of a particle by sensing it with a sharp tip at the end of a spring, all microfabricated from a sliver of silicon.

The sensor rides up and down following the contour of the surface, providing information about the targets shape.

The same day we first touched a target with the thermal and electrical conductivity probe, we first touched another target with a needle about three orders of magnitude smaller - one of the tips of our atomic force microscope, said Michael Hecht of NASAs Jet Propulsion Laboratory, Pasadena, California.

The atomic force microscope can provide details of soil-particle shapes as small as about 100 nanometers, less than one-hundredth the width of a human hair.

This is about 20 times smaller than what can be resolved with Phoenixs optical microscope, which has provided much higher-magnification imaging than anything seen on Mars previously.

The first touch of an atomic force microscope tip to a substrate on the microscopy stations sample-presentation wheel served as a validation test.

The substrate will be used to hold soil particles in place for inspection by the microscope.

The microscopes first imaging began on July 9 and produced a calibration image of a grooved substrate.

Its just amazing when you think that the entire area in this image fits on an eyelash. Im looking forward to exciting things to come, said Hecht. (ANI)

Tags: , , , , , , , , , , , , , , , , , , ,

Posted in National |