NASA scientists find clue to understanding mysteriously hot solar atmosphere

May 30th, 2008 - 2:27 pm ICT by admin  

Washington, May 30 (ANI): Scientists at NASA have revealed a new understanding of the mysterious mechanism responsible for heating the outer part of the solar atmosphere, the corona, to million degree temperatures.

It has become clear in recent years that coronal heating is a highly dynamic process, but inconsistencies between observations and theoretical models have been a major source of heartburn.

According to James Klimchuk, an astrophysicist at the Goddard Space Flight Centers Solar Physics Laboratory in Greenbelt, Maryland, We have now discovered two possible solutions to this dilemma: energy is released impulsively with the right mix of particle acceleration and direct heating, or energy is released gradually very close to the solar surface.

X-rays and ultraviolet radiation from the solar corona affect Earth and its atmosphere. For satellites, this can be a real problem.

As Earths atmosphere gets hotter, it expands and becomes denser at high altitudes. When this happens, satellites experience more drag, which changes their orbits.

Accurately predicting this space weather gives satellite operators more time to respond to or avert problems that could potentially cause interruptions and outages.

In order for scientists to build realistic models of the corona, they must understand coronal heating. Its the root cause of all this radiation, said Klimchuk.

A comparison of numerical simulations with imaging and spectral data from NASA missions reveals that the coronal heating mechanism is highly impulsive, or concentrated close to the solar surface, or both.

The corona is made up of loops of hot gas that arch high above the suns surface. These loops can have a wide range of temperatures, many reaching several million degrees Kelvin, but those of intermediate temperature have proven the most difficult to explain.

Impulsive energy bursts called nanoflares seem to be the key.

Nanoflares can release their energy in different ways, including the acceleration of particles, and we now understand that the right mix of particle acceleration and direct heating is one way to explain the observations, said Klimchuk.

Another possibility is that energy release happens very gradually, but very close to the suns surface.

In this case, a phenomenon called thermal nonequilibrium causes the loops to go through periodic fits of dynamic behavior. The latest computer simulations suggest that these solar temper tantrums may also be able to explain the observations.

Such detailed studies of nanoflare heating and thermal nonequilibrium are now taking scientists one step closer to understanding the Sun-Earth connection. (ANI)

Tags: , , , , , , , , , , , , , , , , , , ,

Posted in National |

Subscribe