Molecular biologists discover formula for longer plant life

September 24th, 2008 - 4:31 pm ICT by ANI  

Berlin, September 24 (ANI): Molecular biologists at the Max Planck Institute for Developmental Biology in Tubingen, Germany, have discovered how the growth of leaves and the aging process of plants are coordinated, which can be referred to as the formula for longer plant life.

In their study, now published in PLoS Biology, scientists at the institute have shown that certain small sections of genes, so-called microRNAs, coordinate growth and aging processes in plants.

These microRNAs inhibit certain regulators, known as TCP transcription factors. These transcription factors in turn influence the production of jasmonic acid, a plant hormone.

The higher the number of microRNAs present, the lower the number of transcription factors that are active, and the smaller the amount of jasmonic acid, which is produced by the plant.

The plant therefore ages more slowly, as this hormone is important for the plants aging processes.

The researchers have succeeded for the first time in describing the antagonistic regulation of growth and aging in plants.

Since the quantity of microRNAs in the plants can be controlled by genetic methods, it may be possible in future to cultivate plants that live longer and grow faster.

MicroRNAs are short, single-strand sections of genes that regulate other genes. They do this by binding to complementary sections of the genetic material, thus preventing them from being read and implemented in genetic products.

In plants, microRNAs mainly inhibit other regulators, so-called transcription factors.

These factors can switch genes on or off by binding to DNA sections, thus activating or blocking them so that either too many or too few proteins are formed.

Since proteins control metabolic processes, an imbalance leads to more or less clearly visible changes to the plant.

The scientists in Professor Detlef Weigels department at the Max Planck Institute for Developmental Biology have investigated the effects that the transcription factors of the TCP family have on the growth and aging of the thale cress model plant (Arabidopsis thaliana).

These transcription factors are regulated by the microRNA miR319.

According to Weigel, Our studies show that the transcription factors, which are regulated by the microRNA miR319, exert a negative influence on the growth of plants, and also lead to premature aging.

The mechanism discovered here is a further milestone in the attempt to explain the relationships of genetic regulation in plants. Only when we have a better understanding of these processes will we be able to produce plants that have particularly desired properties, he added. (ANI)

Tags: , , , , , , , , , , , , , , , , , , ,

Posted in National |

Subscribe