Scientists spot bizarre ecosystem in Great Lakes sinkholes

February 25th, 2009 - 3:38 pm ICT by ANI  

Washington, Feb 25 (ANI): Scientists have detected sinkholes that host exotic and bizarre ecosystems below the surface of Lake Huron, the third largest of North Americas Great Lakes, where the fish typical of the huge freshwater lake are rarely to be seen.

Instead, brilliant purple mats of cyanobacteria, which are cousins of microbes found at the bottoms of permanently ice-covered lakes in Antarctica, and pallid, floating pony-tails of other microbial life thrive in the dense, salty water thats hostile to most familiar, larger forms of life because it lacks oxygen.

According to Bopaiah A. Biddanda of Grand Valley State University, in Muskegon, Michigan, groundwater from beneath Lake Huron is dissolving minerals from the defunct seabed and carrying them into the lake to form these exotic, extreme environments.

Those ecosystems are in a class not only with Antarctic lakes, but also with deep-sea, hydrothermal vents and cold seeps.

You have this pristine fresh water lake that has what amounts to materials from 400 million years ago being pushed out into the lake, said team co-leader Steven A. Ruberg of the Great Lakes Environmental Research Laboratory of the National Oceanic and Atmospheric Administration (NOAA).

The scientists report that some deep sinkholes act as catch basins for dead and decaying plant and animal matter and collect a soft black sludge of sediment topped by a bacterial film.

In the oxygen-depleted water, cyanobacteria carry out photosynthesis using sulfur compounds rather than water and give off hydrogen sulfide, the gas associated with rotting eggs.

Where the sinkholes are deeper still and light fails, microorganisms use chemical means rather than photosynthesis to metabolize the sulfurous nutrients.

Biddanda, Ruberg, and their team are probing the origins of ancient minerals flowing in from beneath this fresh inland sea, striving to understand how long ago the minerals were deposited that are now entering the lake and how fast the salty brew containing them is arriving.

The scientists also plan to chart transitions from light, oxygen-rich, fresh water near the lakes surface to dark, anoxic, salty soup down inside the sinkholes.

The sinkhole research may shed light on how similar microbial communities can arise in environments as disparate as Antarctic lakes, deep-sea vents, and freshwater-lake sinkholes.

It might also lead to the discovery of novel organisms and previously unknown biochemical processes, furthering our exploration of life on Earth, said Biddanda. (ANI)

Related Stories

Tags: , , , , , , , , , , , , , , , , , , ,

Posted in Health Science |