Scientists map bug guts to understand different bugs’ role in the body

February 6th, 2008 - 1:48 pm ICT by admin  

Washington, Feb 6 (ANI): Scientists from the Imperial College London have made a breakthrough in understanding accurately which bugs in the gut are involved in which processes in the body, by plotting the different species of bugs living in seven members of the same Chinese family.

Bugs in the gut are known as gut microbes and trillions live symbiotically inside the human body. The makeup of each persons gut microflora influences their health, and abnormalities in gut microbes have been linked to diseases such as diabetes and obesity.

Earlier studies have already shown that the makeup of an individual’s gut microbes is can be changed by their diet and other environmental factors. Scientists are hopeful that many diseases could be tackled by creating drugs that target different gut bugs and correct abnormalities in them.

However, although it is known that gut bugs are involved in many of the bodys processes, the relationship between different species of bug and different processes has previously been defined only at a broad level, mainly concentrating on the metabolism of fat.

The new study is a major step towards fully defining how different gut bugs affect the metabolism the chemical reactions inside the body that keep it working, for example in converting food into energy or in maintaining cells.

The researchers believe that once they have a complete map of the interactions between the bugs and the metabolism, they will be able to use metabolic information to determine the makeup and function of a persons gut microflora, and then find new ways to treat different diseases by targeting specific gut bugs and engineering their interactions with the host.

Its now widely recognised that gut bugs play an important part in peoples health but we dont know which of the hundreds of different species of gut microbes have the biggest influence on us, or exactly how they are involved in the thousands of processes inside the body. Our new study has enabled us to see and map to a greater extent than ever before how the bugs interact with the body, Professor Jeremy Nicholson, lead author of the study from the Department of Biomolecular Medicine at Imperial College London, said.

Now we have developed a new way of exploring the connections between bugs and man we can hope to find a Rosetta Stone to translate the functional properties of the bugs and so improve therapies to treat disorders of the gut and related conditions, he added.

The study also showed that the Chinese individuals had different bacteria at the species level to the five American individuals profiled in previous studies. This suggests that there are significant differences in the metabolisms of people from the two countries, which are not just down to their own genetic makeup. The researchers suggest that these differences should be taken into account when looking at peoples risks of different diseases in the two countries.

Prof Liping Zhao, coordinator of this project and senior author leading the microbial analysis from Shanghai Centre for Systems Biomedicine at Shanghai Jiao Tong University, indicated that this new methodology is a significant step toward understanding whole-body systems biology or global systems biology.

Simultaneous molecular profiling of gut microbiota and host metabolism of a large cohort of people for a reasonably long time can lead to discovery of pre-disease biomarkers representing typical changes during the transition stage from health to disease in chronic conditions such as cancers or metabolic syndromes. This can eventually lead to effective management of public health in a predictive and preventive manner,” he said.

For the study, scientists used DNA fingerprinting of the gut microflora to gain a picture of which species of bug were living inside each of the seven volunteers. Each volunteer had a different makeup of gut bugs inside them, even though they were members of the same Chinese family and therefore were closely linked in genetic and lifestyle terms.

The scientists compared the variations in the volunteers gut microflora with the variations in their metabolisms. They determined the metabolic profile of the volunteers by analysing samples from their faeces and urine, using NMR spectroscopic urinary profiling.

The volunteers in the study were four generations of the same family, six living in China and one in the UK. Three were males, aged between 18 and 55, and four were females aged between 1.5 and 95. Although the sample size was small, this is still the largest survey of its kind to date and the study represents two years work. (ANI)

Tags: , , , , , , , , , , , , , , , , , , ,

Posted in Health Science |