Cosmic radio noise that booms six times louder than expected

January 8th, 2009 - 3:12 pm ICT by ANI  

Washington, Jan 8 (ANI): A research team from NASAs Goddard Space Flight Center in the US has announced the discovery of cosmic radio noise that booms six times louder than expected.

The finding comes from a balloon-borne instrument named ARCADE, which stands for the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission.

In July 2006, the instrument launched from NASAs Columbia Scientific Balloon Facility in Palestine, Texas, and flew to an altitude of 120,000 feet, where the atmosphere thins into the vacuum of space.

ARCADEs mission was to search the sky for heat from the first generation of stars. Instead, it found a cosmic puzzle.

The universe really threw us a curve, said Alan Kogut of NASAs Goddard Space Flight Center. Instead of the faint signal we hoped to find, here was this booming noise six times louder than anyone had predicted, he added.

Detailed analysis ruled out an origin from primordial stars or from known radio sources, including gas in the outermost halo of our own galaxy.

The source of this cosmic radio background remains a mystery.

ARCADE is the first instrument to measure the radio sky with enough precision to detect this mysterious signal.

To enhance the sensitivity of ARCADEs radio receivers, they were immersed in more than 500 gallons of ultra-cold liquid helium. The instruments operating temperature was just 2.7 degrees above absolute zero.

This is the same temperature as the cosmic microwave background (CMB) radiation, the remnant heat of the Big Bang that was itself discovered as cosmic radio noise in 1965.

If ARCADE is the same temperature as the microwave background, then the instruments heat cannot contaminate the cosmic signal, Kogut explained.

The sought-for signal from the earliest stars remains hidden behind the newly detected cosmic radio background.

This noise complicates efforts to detect the very first stars, which are thought to have formed about 13 billion years ago - not long, in cosmic terms, after the Big Bang.

Nevertheless, this cosmic static may provide important clues to the development of galaxies when the universe was less than half its present age.

Unlocking its origins should provide new insight into the development of radio sources in the early universe. (ANI)

Related Stories

Tags: , , , , , , , , , , , , , , , , , , ,

Posted in Health Science |